Abstract

Wildlife recognition is of utmost importance for monitoring and preserving biodiversity. In recent years, deep-learning-based methods for wildlife image recognition have exhibited remarkable performance on specific datasets and are becoming a mainstream research direction. However, wildlife image recognition tasks face the challenge of weak generalization in open environments. In this paper, a Deep Joint Adaptation Network (DJAN) for wildlife image recognition is proposed to deal with the above issue by taking a transfer learning paradigm into consideration. To alleviate the distribution discrepancy between the known dataset and the target task dataset while enhancing the transferability of the model's generated features, we introduce a correlation alignment constraint and a strategy of conditional adversarial training, which enhance the capability of individual domain adaptation modules. In addition, a transformer unit is utilized to capture the long-range relationships between the local and global feature representations, which facilitates better understanding of the overall structure and relationships within the image. The proposed approach is evaluated on a wildlife dataset; a series of experimental results testify that the DJAN model yields state-of-the-art results, and, compared to the best results obtained by the baseline methods, the average accuracy of identifying the eleven wildlife species improves by 3.6 percentage points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.