Abstract

Parkinson's disease is a progressive, age-related, neurodegenerative disorder, and oxidative stress is an important mediator in its pathogenesis. DJ-1 has been identified as a causative gene of a familial form of Parkinson's disease, PARK7, and plays a significant role in antioxidative defense, protecting cells from oxidative stress. A cysteine residue of DJ-1 at position 106 (Cys-106) is preferentially oxidized under oxidative stress. This reactive Cys-106 plays a critical role in the biological function of DJ-1, which could act as a sensor of oxidative stress by regulating antioxidative defense depending on Cys-106 oxidation. Thus, the levels of Cys-106-oxidized DJ-1 (oxDJ-1) could be a possible biomarker of oxidative stress. This chapter focuses on the properties of DJ-1 and oxDJ-1 levels as a biomarker of Parkinson's disease. In particular, the usability of these biomarkers to prevent and treat this neurodegenerative disease is discussed. Further, this section deals with the importance of identifying a biomarker of early-phase Parkinson's disease. Finally, this chapter summarizes the features of oxDJ-1 levels in the brain and blood as a biomarker candidate for early-phase Parkinson's disease based on our results using oxDJ-1-specific antibodies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call