Abstract

DJ-1 is an antioxidant protein known to reduce levels of reactive oxygen species (ROS), but its presence or function in mast cells and allergic diseases is unknown. We sought to determine the role and mechanism of DJ-1 in allergic responses in vitro and in vivo. ROS and DJ-1 levels in serum or culture medium were measured with ELISA kits. The role of DJ-1 was evaluated in mast cell cultures and passive cutaneous anaphylaxis in normal or DJ-1 knockout (KO) mice. The mechanism of DJ-1 action was examined by using immunoblotting, immunoprecipitation, RT-PCR, and other molecular biological approaches. Patients with atopic dermatitis had increased levels of ROS and diminished levels of DJ-1. DJ-1 KO mice exhibited enhanced passive cutaneous anaphylaxis and augmented ROS levels in sera and bone marrow-derived mast cells (BMMCs). Furthermore, antigen-induced degranulation and production of TNF-α and IL-4 were significantly amplified in DJ-1 KO and anti-DJ-1 small interfering RNA-transfected BMMCs compared with that seen in wild-type (WT) BMMCs. Studies with these cells and BMMCs transfected with small interfering RNAs against the phosphatases Src homology domain 2-containing protein tyrosine phosphatase (SHP) 1 and SHP-2 revealed that the DJ-1 KO phenotype could be attributed to suppression of SHP-1 activity and enhancement of SHP-2 activity, leading to strengthened signaling through linker for activation of T cells, phospholipase Cγ, and mitogen-activated protein kinases. A deficiency or constitutive activation of DJ-1 can have implications in mast cell-driven allergic diseases, such as asthma and anaphylaxis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.