Abstract

The oxidation-sensitive chaperone protein DJ-1 has been implicated in several human disorders including cancer and neurodegenerative diseases. During neurodegeneration associated with protein misfolding, such as that observed in Alzheimer's disease and Huntington's disease (HD), both oxidative stress and protein chaperones have been shown to modulate disease pathways. Therefore, we set out to investigate whether DJ-1 plays a role in HD. We found that DJ-1 expression and its oxidation state are abnormally increased in the human HD brain, as well as in mouse and cell models of HD. Furthermore, overexpression of DJ-1 conferred protection in vivo against neurodegeneration in yeast and Drosophila. Importantly, the DJ-1 protein directly interacted with an expanded fragment of huntingtin Exon 1 (httEx1) in test tube experiments and in cell models and accelerated polyglutamine aggregation and toxicity in an oxidation-sensitive manner. Our findings clearly establish DJ-1 as a potential therapeutic target for HD and provide the basis for further studies into the role of DJ-1 in protein misfolding diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.