Abstract

As a member of robot families, climbing robots have become one of the research hot-spots in the robotic field recently and Gekko gecko (G. gecko) has been broadly seen as an ideal model for climbing robot development. But for gecko-mimic robots, one of the key problems is how to design the robot’s foot. In this paper, (1) high-speed camera recording and electrophysiological method are used to observe motion patterns of G. gecko’s foot when it climbs on different oriented surfaces; (2) nerve innervations of gecko’s toes to motion and reception are studied. It is found that the five toes of the G. gecko can be divided into two motion and reception divisions, and also its motion and reception are modulated and controlled hierarchically. The results provide important information and exclusive ideas for the foot design and control algorithm of gecko-mimic robots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.