Abstract

In this note we give examples of division rings which posses an anti-automorphism but no involution. The motivation for such examples comes from geometry. If D is a division ring and V a finite-dimensional right D-vector space of dimension ≥ 3, then the projective geometry P(V ) has a duality (resp. polarity) if and only if D has an anti-automorphism (resp. involution) [2, p. 97, p. 111]. Thus, the existence of a division ring with an anti-automorphism but no involution gives examples of projective geometries with dualities but no polarities. All the division rings considered in this paper are finite-dimensional algebras over their center. The anti-automorphisms we construct are not linear over the center (i.e. they do not restrict to the identity on the center) since a theorem of Albert [1, Theorem 10.19] shows that every finite-dimensional central division algebra with a linear anti-automorphism has an involution. Several proofs of this result can be found in the literature, see for instance [5] or [10, Chapter 8, §8]. The paper is organized as follows. Section 2 collects some background information on central division algebras. Section 3 establishes the existence of division algebras over algebraic number fields which have anti-automorphisms but no involution, and gives two explicit constructions of such algebras. The proofs rely on deep classical results on the Brauer group of number fields. Section 4 gives examples whose center has a more complicated structure (they are Laurent series fields over local fields), but the proof that these algebras have no involution is more elementary. Sections 3 and 4 are independent of each other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.