Abstract

A Dedekind-finite set is said to be divisible by a natural number n if it can be partitioned into pieces of size n. We study several aspects of this notion, as well as the stronger notion of being partitionable into n pieces of equal size. Among our results are that the divisors of a Dedekind-finite set can consistently be any set of natural numbers (containing 1 but not 0), that a Dedekind-finite power of 2 cannot be divisible by 3, and that a Dedekind-finite set can be congruent modulo 3, to all of 0, 1, and 2 simultaneously. (In these results, 2 and 3 serve as typical examples; the full results are more general.)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.