Abstract

Theoretical energy-based conformational analysis of divinyl selenide performed at the MP2/6-311G** level is substantiated by the second-order polarization propagator approach (SOPPA) calculations and experimental measurements of its (77)Se-(1)H spin-spin coupling constants, demonstrating marked stereochemical behavior in respect of the internal rotation of both vinyl groups around the Se-C bonds. Based on these data, divinyl selenide is shown to exist in an equilibrium mixture of three nonplanar conformers: one the preferred syn-s-cis-s-trans and two minor anti-s-trans-s-trans and syn-s-trans-s-trans forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.