Abstract

The powerful representation capacity of deep learning has made it inevitable for the underwater image enhancement community to employ its potential. The exploration of deep underwater image enhancement networks is increasing over time; hence, a comprehensive survey is the need of the hour. In this paper, our main aim is two-fold, (1): to provide a comprehensive and in-depth survey of the deep learning-based underwater image enhancement, which covers various perspectives ranging from algorithms to open issues, and (2): to conduct a qualitative and quantitative comparison of the deep algorithms on diverse datasets to serve as a benchmark, which has been barely explored before.We first introduce the underwater image formation models, which are the base of training data synthesis and design of deep networks, and also helpful for understanding the process of underwater image degradation. Then, we review deep underwater image enhancement algorithms, and a glimpse of some of the aspects of the current networks is presented, including architecture, parameters, training data, loss function, and training configurations. We also summarize the evaluation metrics and underwater image datasets. Following that, a systematically experimental comparison is carried out to analyze the robustness and effectiveness of deep algorithms. Meanwhile, we point out the shortcomings of current benchmark datasets and evaluation metrics. Finally, we discuss several unsolved open issues and suggest possible research directions. We hope that all efforts done in this paper might serve as a comprehensive reference for future research and call for the development of deep learning-based underwater image enhancement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.