Abstract

The South American continental plate has been affected by intraplate deformation since the start of West Gondwana disruption in the Lower Cretaceous (about 140 Ma). That the present shape of South America is not precisely the same as its shape in reassembled Gondwana partly explains the imperfect fits of the conjugate margins of the South Atlantic proposed since the first reconstruction models of the early 20th century. Several attempts at defining subplates within South America have been published but not all take account of existing knowledge of its continental geology. Here a subdivision into eight rigid subplates is proposed, based primarily on geological and tectonic evidence. Our model is tested against three published models of a multi-subplate Africa, as re-shaped to the pre-breakup outline of that continent, by visual fitting and the use of piercing points. The South America blocks were rotated and the Euler poles calculated interactively in reconstruction software. All three proposed fits had overlapping block margins within South America, indicating post-breakup rifting, except for the Transbrasiliano lineament. This NNE-SSW crustal-scale shear zone was used as a boundary for seven of the eight blocks. It is clearly the main intraplate accommodation zone in South America and an important piercing point in relation to the Kandi lineament in West Africa. The other block boundaries correspond to narrow zones with sedimentary basins and/or dyke swarms that have developed since South Atlantic opening. Each fit required a different configuration of the South America subplates since the pre-rift disposition of the African subplates also differ from each other, contributing to the uncertainty in any detailed reassembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call