Abstract

Markets continuously demand higher resolution and higher productivity in flat panel display (FPD) exposure systems. Our solution to improve resolution and productivity is the use of broadband wavelength illumination. A larger depth of focus (DOF) is also very important to achieve higher productivity because inadequate DOF can cause product defects. To obtain higher resolution and larger DOF, off axis illumination (OAI) conditions have been widely used. OAIs using a narrowband wavelength illumination are well documented and sufficiently studied. On the other hand, Canon FPD exposure tools use a broadband illumination source to achieve higher resolution and productivity. To obtain sufficient OAI effects in broadband exposure lithography, new technology should be developed with consideration of broadband wavelength because OAI effects are different between broadband and narrowband illumination. In this paper we introduce divided spectrum illumination (DSI), a new design concept proposed to achieve both high resolution and large DOF by optimizing the broadband illumination source wavelength band depending on the illumination angle. Experimental imaging results of line and space patterns with a line width of 1.0-μm and pitch of 2.0-μm showed that the DSI design improved resolution. Results showed that test patterns imaged using traditional narrowband OAI could not be resolved at the top of the resist even at the best focus, however resist profiles using DSI were sharp enough to retain pattern fidelity at the top of resist. DOF with DSI also improved 21 % compared to traditional OAI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call