Abstract
Despite that 3D human body reconstruction from a single image has obtained rapid progress in recent years, most methods aim at the body without the hands and face. However, hand gestures and facial expressions are also important for delivering human intentions or emotions. This paper proposes a method for holistic 3D reconstruction of the human body from a single RGB image, including hands, body, and face. Our approach is based on the SMPL eXpressive (SMPL-X), a unified 3D parametric human body model of body, hands, and face. Since it is difficult to exactly regress the model's parameters of different body parts by a single framework, we use a divide-and-conquer strategy for the whole human body reconstruction. We exploit different deep neural networks to predict the hand, body, and head model's parameters, then integrate them into an entire 3D model to realize a holistic and expressive 3D human body reconstruction. Simulation results demonstrate that our method has obtained state-of-the-art performance with better facial expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.