Abstract

In this paper we propose an improvement for flowpipe-construction-based reachability analysis techniques for hybrid systems. Such methods apply iterative successor computations to pave the reachable region of the state space by state sets in an over-approximative manner. As the computational costs steeply increase with the dimension, in this work we analyse the possibilities for improving scalability by dividing the search space in sub-spaces and execute reachability computations in the sub-spaces instead of the global space. We formalise such an algorithm and provide experimental evaluations to compare the efficiency as well as the precision of our sub-space search to the original search in the global space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.