Abstract

AbstractBig data present new theoretical and computational challenges as well as tremendous opportunities in many fields. In health care research, we develop a novel divide‐and‐conquer (DAC) approach to deal with massive and right‐censored data under the accelerated failure time model, where the sample size is extraordinarily large and the dimension of predictors is large but smaller than the sample size. Specifically, we construct a penalized loss function by approximating the weighted least squares loss function by combining estimation results without penalization from all subsets. The resulting adaptive LASSO penalized DAC estimator enjoys the oracle property. Simulation studies demonstrate that the proposed DAC procedure performs well and also reduces the computation time with satisfactory performance compared with estimation results using the full data. Our proposed DAC approach is applied to a massive dataset from the Chinese Longitudinal Healthy Longevity Survey.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.