Abstract
The goal of this paper is to test if data partitioning based on domain knowledge improves the performance of unsupervised anomaly detection algorithms for the detection of faulty internal combustion engines. We test three common anomaly detection algorithms to predict defective engines at the end of an assembly line, both with and without data partitioning. The algorithms are trained on high-dimensional vibration data. To evaluate and compare the detection performance of partitioned and unpartitioned approaches, we use a labeled collection of known anomalies. Using domain knowledge to partition the data improves the anomaly detection performance of all tested algorithms. A divide and conquer strategy based on data partitioning, thus, appears to be a viable anomaly detection approach in cases where abundant unlabeled data is available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.