Abstract
The unfolded protein response (UPR), an evolutionarily conserved transcriptional induction program that is coupled with intracellular signaling from the endoplasmic reticulum (ER) to the nucleus, is activated to cope with ER stress and to maintain the homeostasis of the ER. In 1996, we isolated a basic leucine zipper protein, which had been previously named activating transcription factor (ATF)6, as a candidate transcription factor responsible for the mammalian UPR. Subsequent analysis, however, was confounding. The problem was eventually tracked down to an unusual property of ATF6: rather than being a soluble nuclear protein, as expected for an active transcription factor, ATF6 was instead synthesized as a transmembrane protein embedded in the ER, which was activated by ER stress-induced proteolysis. ATF6 was thus unique: an ER stress sensor/transducer that is involved in all steps of the UPR, from the sensing step in the ER to the transcriptional activation step in the nucleus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.