Abstract

Numerical simulation with COREDIV code of DEMO H-mode discharges (tungsten divertor and wall) are performed considering the influence of seeding impurities with different atomic numbers: Ne, Ar and Kr on the DEMO scenarios. The approach is based on integrated numerical modeling using the COREDIV code, which self-consistently solves radial transport equations in the core region and 2D multi-fluid transport in the SOL. In this paper we focus on investigations how the operational domain of DEMO can be influenced by seeding gasses.Simulations with the updated prompt re-deposition model implemented in the code show that only for Ar and Kr, for high enough radial diffusion in the SOL, it is possible to achieve H-mode plasma operation (power to the SOL> L-H transition threshold power) with acceptable level of the power to the target plates. For neon seeding such regime of operation seems not to be possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call