Abstract
The physics that sets the width of the power exhaust channel in a tokamak scrape-off layer and its scaling with engineering parameters is of fundamental importance for reactor design, yet it remains to be understood. An extensive array of divertor heat flux diagnostics was recently commissioned in Alcator C-Mod with the aim of improving our understanding. Initial results are reported from EDA H-mode discharges in which plasma current, input power, toroidal field and magnetic topology were varied. The integral width of the outer divertor heat flux footprint is found to lie in the range of 3–5mm mapped to the mid-plane. Widths are insensitive to single versus double-null topology and the magnitude of toroidal field. Pedestal physics appears to largely determine these widths; a dependence of width on plasma thermal energy is noted, yielding a reduction in width as plasma current is increased for the best EDA H-modes.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.