Abstract

This study evaluates heat transfer characteristics of a sub-channels-inserted (SCI) porous heat removal device for divertor cooling. It is clarified that increasing the total volume of the sub-channels strongly contributes to the enhancement of phase-change of coolant as well as the vapor discharge. A high heat flux of approximately 25 MW/m2 is removed at a wall superheat less than 70 K by increasing the number of the sub-channels installed under low flow rate conditions. The results also suggest that the SCI porous heat removal device could be applicable for the divertor cooling by optimizing the sub-channel design. Furthermore, especially for an enlarged heating area, optimizing the location of the sub-channel inlet, that is the interval of each sub-channel inlet, could be essential in order to smoothly discharge the generated vapor outside the porous medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.