Abstract

BackgroundMalaria remains the world’s most important devastating parasitic disease. Of the five species of Plasmodium known to infect and cause human malaria, Plasmodium falciparum is the most virulent and responsible for majority of the deaths caused by this disease. Mainstream drug therapy targets the asexual blood stage of the malaria parasite, as the disease symptoms are mainly associated with this stage. The prevalence of malaria parasite strains resistance to existing anti-malarial drugs has made the control of malaria even more challenging and hence the development of a new class of drugs is inevitable.MethodsScreening against different drug resistant and sensitive strains of P. falciparum was performed for few bicyclic lactam-based motifs, exhibiting a broad spectrum of activity with low toxicity generated via a focussed library obtained from diversity oriented synthesis (DOS). The synthesis and screening was followed by an in vitro assessment of the possible cytotoxic effect of this class of compounds on malaria parasite.ResultsThe central scaffold a chiral bicyclic lactam (A) and (A’) which were synthesized from (R)-phenylalaninol, levulinic acid and 3-(2-nitrophenyl) levulinic acid respectively. The DOS library was generated from A and from A’, by either direct substitution with o-nitrobenzylbromide at the carbon α- to the amide functionality or by conversion to fused pyrroloquinolines. Upon screening this diverse library for their anti-malarial activity, a dinitro/diamine substituted bicyclic lactam was found to demonstrate exceptional activity of >85% inhibition at 50 μM concentration across different strains of P. falciparum with no toxicity against mammalian cells. Also, loss of mitochondrial membrane potential, mitochondrial functionality and apoptosis was observed in parasite treated with diamine-substituted bicyclic lactams.ConclusionsThis study unveils a DOS-mediated exploration of small molecules with novel structural motifs that culminates in identifying a potential lead molecule against malaria. In vitro investigations further reveal their cytocidal effect on malaria parasite growth. It is not the first time that DOS has been used as a strategy to identify therapeutic leads against malaria, but this study establishes the direct implications of DOS in scouting novel motifs with anti-malarial activity.Electronic supplementary materialThe online version of this article (doi:10.1186/1475-2875-13-467) contains supplementary material, which is available to authorized users.

Highlights

  • Malaria remains the world’s most important devastating parasitic disease

  • The bicyclic lactam A was synthesized by condensation of R-phenylalaninol with levulinic acid in presence of para-toluenesulfonic acid (PTSA) under toluene reflux with excellent yield (84%) and high diastreoselectivity (98%)

  • In a similar fashion as in A’, it was converted to G

Read more

Summary

Introduction

Malaria remains the world’s most important devastating parasitic disease. Of the five species of Plasmodium known to infect and cause human malaria, Plasmodium falciparum is the most virulent and responsible for majority of the deaths caused by this disease. The prevalence of malaria parasite strains resistance to existing anti-malarial drugs has made the control of malaria even more challenging and the development of a new class of drugs is inevitable. Out of all known species of malaria parasite, Plasmodium falciparum causes the most virulent form of malaria and is a leading infectious cause of morbidity and mortality [2]. Adding to the woes are the prevalent P. falciparum strains resistant to the antimalarial drugs, such as chloroquine and artemisinin [6,7]. Despite this resistance, combination-based therapy can continue to cure patients provided novel drugs are introduced and included in the combination [8]. Prompt endeavours are prerequisite to develop a new class of drugs as chemotherapeutic anti-malarials

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call