Abstract

Dinoflagellate bioluminescence systems operate with or without a luciferin binding protein, representing two distinct modes of light production. However, the distribution, diversity, and evolution of the luciferin binding protein gene within bioluminescent dinoflagellates are not well known. We used PCR to detect and partially sequence this gene from the heterotrophic dinoflagellate Noctiluca scintillans and a group of ecologically important gonyaulacoid species. We report an additional luciferin binding protein gene in N. scintillans which is not attached to luciferase, further to its typical combined bioluminescence gene. This supports the hypothesis that a profound re-organization of the bioluminescence system has taken place in this organism. We also show that the luciferin binding protein gene is present in the genera Ceratocorys, Gonyaulax, and Protoceratium, and is prevalent in bioluminescent species of Alexandrium. Therefore, this gene is an integral component of the standard molecular bioluminescence machinery in dinoflagellates. Nucleotide sequences showed high within-strain variation among gene copies, revealing a highly diverse gene family comprising multiple gene types in some organisms. Phylogenetic analyses showed that, in some species, the evolution of the luciferin binding protein gene was different from the organism's general phylogenies, highlighting the complex evolutionary history of dinoflagellate bioluminescence systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call