Abstract

BackgroundMethionine sulfoxide reductases (Msrs) are repair enzymes that protect proteins from oxidative stress by catalyzing stereospecific reduction of oxidized methionine residues. MsrB1 is a selenocysteine-containing cytosolic/nuclear Msr with high expression in liver and kidney.Principal FindingsHere, we identified differences in MsrB1 gene structure among mammals. Human MsrB1 gene consists of four, whereas the corresponding mouse gene of five exons, due to occurrence of an additional intron that flanks the stop signal and covers a large part of the 3′-UTR. This intron evolved in a subset of rodents through intronization of exonic sequences, whereas the human gene structure represents the ancestral form. In mice, both splice forms were detected in liver, kidney, brain and heart with the five-exon form being the major form. We found that both mRNA forms were translated and supported efficient selenocysteine insertion into MsrB1. In addition, MsrB1 occurs in two protein forms that migrate as 14 and 5 kDa proteins. We found that each mRNA splice form generated both protein forms. The abundance of the 5 kDa form was not influenced by protease inhibitors, replacement of selenocysteine in the active site or mutation of amino acids in the cleavage site. However, mutation of cysteines that coordinate a structural zinc decreased the levels of 5 and 14 kDa forms, suggesting importance of protein structure for biosynthesis and/stability of these forms.ConclusionsThis study characterized unexpected diversity of protein and mRNA forms of mammalian selenoprotein MsrB1.

Highlights

  • Oxidation of proteins during aging or under conditions of oxidative stress may lead to alterations in protein structure and function and has been linked to age-related diseases [1,2]

  • Methionine sulfoxide reductases (Msrs) are repair enzymes, which reduce oxidized methionine residues in proteins in a stereospecific manner. Two such protein families are known, including MsrA and MsrB that act on methionine S-sulfoxide (Met-SO) and methionine R-sulfoxide (Met-RO), respectively

  • Identification of two forms of mouse MsrB1 mRNA Computational analysis of mammalian MsrB1 ESTs revealed two cDNA forms in mice that differed in the 39-untranslated regions (UTRs)

Read more

Summary

Introduction

Oxidation of proteins during aging or under conditions of oxidative stress may lead to alterations in protein structure and function and has been linked to age-related diseases [1,2]. Methionine sulfoxide reductases (Msrs) are repair enzymes, which reduce oxidized methionine residues in proteins in a stereospecific manner. Two such protein families are known, including MsrA and MsrB that act on methionine S-sulfoxide (Met-SO) and methionine R-sulfoxide (Met-RO), respectively. One of them is MsrB1 (previously known as SelR or SelX) that localizes to the nucleus and cytosol. It is a selenoprotein that contains selenocysteine (Sec) in place of cysteine normally present in the catalytic sites of MsrBs and MsrAs [3]. Methionine sulfoxide reductases (Msrs) are repair enzymes that protect proteins from oxidative stress by catalyzing stereospecific reduction of oxidized methionine residues. MsrB1 is a selenocysteine-containing cytosolic/nuclear Msr with high expression in liver and kidney

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call