Abstract

Polymyxins have become drugs of last resort for treatment of multi-drug resistant (MDR) Gram-negative infections. However, the mechanisms of resistance to this compound have not been completely elucidated. In this study, we evaluated the mechanisms of resistance to this antimicrobial in two A. baumannii clinical isolates, respectively, susceptible (A027) and resistant (A009) to polymyxin B before and after polymyxin B exposure (A027ind and A009ind). The pmrAB and lpxACD were sequenced and their transcriptional levels were analyzed by qRT-PCR. The bacterial cell morphology was evaluated by transmission electronic microscopy (TEM) and the membrane potential was measured using Zeta-potential analyzer. The virulence of strains was studied using a Caenorhabditis elegans model. Both clinical isolates exhibited an elevation of the polymyxin B MIC after exposure to this compound. On the other hand, A027ind showed decreased values of MIC for β-lactams, aminoglycosides, vancomycin, teicoplanin, oxacillin and erythromycin. A027ind harbored two mutations in pmrB and the ISAba125 disrupting the lpxA. In contrast, A009ind strain exhibited increase of pmrB transcriptional level, after polymyxin B exposure, despite the absence of mutations in the pmrAB genes. The TEM images revealed a thicker and more electron-dense peptidoglycan layer for A009 than that of A027. The exposure to polymyxin B induced a strong condensation and darkening of intracellular material, mainly in A009ind. In addition, the surface charge of A009 was significantly less negative than the one of A027. Using the C. elegans model, only A027ind strain showed a reduction on virulence. The diversity of polymyxin B resistance mechanisms among A. baumannii strains evaluated in this study confirms the complexity of these mechanisms, which may vary depending of the background of each strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.