Abstract

ABSTRACTInformation is presented concerning the overall arrangement of plastid DNA (ptDNA) in plastids of approximately 100 spp. of eukaryote algae, representing all classes. The three‐dimensional arrangement of the ptDNA was assessed by study of both living and fixed material, stained with the DNA fluorochrome 4′,6‐diamidino‐2‐phenylindole (DAPI), using both phase and fluorescence microscopy. The widespread occurrence of two major types of ptDNA configuration known from prior electron microscopy studies was confirmed. These are (1) DNA densities (nucleoids) of variable size and morphology, scattered throughout the plastid, and (2) a ring nucleoid, beaded or unbeaded, lying just within the girdle lamella. Type 1 is characteristic of Rhodophyta, Dinophyta, Chlorophyta, Cryptophyta, Prymnesiophyceae and Eustigmatophyceae (with one exception). Type 2 is characteristic of Phaeophyceae, Bacillariophyceae, Raphidophyceae, Chrysophyceae (except silicoflagellates and organisms such as Synura and Dinobryon), and Xanthophyceae (with the exception of Vaucheria and three genera known to lack girdle lamellae, Bumilleria, Bumilleriopsis, and Pseudobumilleriopsis). Some of these exceptional forms, as well as Euglenophyta, have configurations of ptDNA not previously recognized. In all the configurations observed, the DNA of a single plastid could be interpreted as being in continuity.This character of plastids appears to be stable under varied conditions of growth and at differing stages of the life cycle, where examined, and has confirmed the reclassification made on other grounds of several taxonomic entities. It has also revealed new questionable classifications. Since DAPI staining is far simpler than serial sectioning for electron microscopy in revealing ptDNA architecture, use of the technique may be valuable for future studies of numerous organisms, both to help in their identification and as an aid to unravelling major taxonomic affinities. In light of the endosymbiont hypothesis, plastid characters may require as great attention as those of the remainder of the cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.