Abstract

Phosphatidylinositol phosphates (PIPs, phosphoinositides) are localized to the membranes of all cellular compartments, and play pivotal roles in multiple cellular events. To fulfill their functions, PIPs that are located to specific organelles or membrane domains bind to and recruit various proteins in spatiotemporal specific manner via protein domains that selectively bind to either a single or an array of PIPs. In Entamoeba histolytica, the human intestinal protozoan parasite, PIPs and PIP-binding proteins have been shown to be involved in their virulence-associated mechanisms such as cell motility, vesicular traffic, trogo- and phagocytosis. In silico search of the domains and the signatures implicated in PIP binding in the E. histolytica proteome allows identification of dozens of potential PIP-binding proteins. However, such analysis is often misleading unless the protein domain used as query is cautiously selected and the binding specificity of the proteins are experimentally validated. This is because all the domains initially presumed to bind PIPs in other systems are not always capable of PIP binding, but rather involved in other biological roles. In this review, we carried out in silico survey of proteins which have PIP-binding domains in the E. histolytica genome by utilizing only validated PIP-binding domains that had been experimentally proven to be faithful PIP-binding bioprobes. Our survey has identified that FYVE (Fab1, YOTB1, Vac1, EEA1) and PH (pleckstrin homology) domain containing proteins are the most expanded families in E. histolytica. A few FYVE domain-containing proteins (EhFP4 and 10) and phox homology (PX) domain containing proteins (EhSNX1 and 2) were previously studied in depth in E. histolytica. Furthermore, most of the identified PH domain-containing proteins are annotated as protein kinases and possess protein kinase domains. Overall, PIP-binding domain-containing proteins that can be identified by in silico survey of the genome using the domains from well characterized bioprobes are limited in E. histolytica. However, their domain architectures are often unique, suggesting unique evolution of PIP-binding domain-containing proteins in this organism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.