Abstract

The neural-hemodynamic relationships may vary depending on cortical processing patterns. To investigate how cortical hemodynamics reflects neural activity involving different cortical processing patterns, we delivered electrical stimulation pulses to rat hindpaws, unilaterally or bilaterally, and simultaneously measured electrophysiological (local field potential, LFP < 100 Hz; multiunit activity, MUA>300 Hz) and optical intrinsic signals associated with changes in cerebral blood volume (CBV). Unilateral stimulation evoked neural and optical signals in bilateral primary somatosensory cortices. Ipsilateral optical responses indicating an increased CBV exhibited a peak magnitude of ~30% and mediocaudal shifts relative to contralateral responses. Correlation analyses revealed different scale factors between contralateral and ipsilateral responses in LFP-MUA and LFP-CBV relationships. Bilateral stimulation at varying time intervals evoked hemodynamic responses that were strongly suppressed at 40-ms intervals. This suppression quantitatively reflected suppressed LFP responses to contralateral testing stimulation and not linear summation, with slowly fluctuating LFP responses to ipsilateral conditioning stimulation. Consequently, in the overall responses to bilateral stimulation, CBV-related responses were more linearly correlated with MUA than with LFPs. When extracting high-frequency components (>30 Hz) from LFPs, we found similar scale factors between contralateral and ipsilateral responses in LFP-MUA and LFP-CBV relationships, resulting in significant linear relationships among these components, MUA, and cortical hemodynamics in overall responses to bilateral stimulation. The dependence of LFP-MUA-hemodynamic relationships on cortical processing patterns and the LFP temporal/spectral structure is important for interpreting hemodynamic signals in complex functional paradigms driving diverse cortical processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.