Abstract

BackgroundAmanitin-producing mushrooms, mainly distributed in the genera Amanita, Galerina and Lepiota, possess MSDIN gene family for the biosynthesis of many cyclopeptides catalysed by prolyl oligopeptidase (POP). Recently, transcriptome sequencing has proven to be an efficient way to mine MSDIN and POP genes in these lethal mushrooms. Thus far, only A. palloides and A. bisporigera from North America and A. exitialis and A. rimosa from Asia have been studied based on transcriptome analysis. However, the MSDIN and POP genes of many amanitin-producing mushrooms in China remain unstudied; hence, the transcriptomes of these speices deserve to be analysed.ResultsIn this study, the MSDIN and POP genes from ten Amanita species, two Galerina species and Lepiota venenata were studied and the phylogenetic relationships of their MSDIN and POP genes were analysed. Through transcriptome sequencing and PCR cloning, 19 POP genes and 151 MSDIN genes predicted to encode 98 non-duplicated cyclopeptides, including α-amanitin, ÎČ-amanitin, phallacidin, phalloidin and 94 unknown peptides, were found in these species. Phylogenetic analysis showed that (1) MSDIN genes generally clustered depending on the taxonomy of the genus, while Amanita MSDIN genes clustered depending on the chemical substance; and (2) the POPA genes of Amanita, Galerina and Lepiota clustered and were separated into three different groups, but the POPB genes of the three distinct genera were clustered in a highly supported monophyletic group.ConclusionsThese results indicate that lethal Amanita species have the genetic capacity to produce numerous cyclopeptides, most of which are unknown, while lethal Galerina and Lepiota species seem to only have the genetic capacity to produce α-amanitin. Additionally, the POPB phylogeny of Amanita, Galerina and Lepiota conflicts with the taxonomic status of the three genera, suggesting that underlying horizontal gene transfer has occurred among these three genera.

Highlights

  • Amanitin-producing mushrooms, mainly distributed in the genera Amanita, Galerina and Lepiota, possess MSDIN gene family for the biosynthesis of many cyclopeptides catalysed by prolyl oligopeptidase (POP)

  • The precursor peptide genes of α-amanitin (α-AMA) and phallacidin (PHD) along with multiple related sequences encoding unknown cyclic peptides were first identified and predicted in Amanita bisporigera by genome shotgun sequencing, indicating that amatoxins and phallotoxins are encoded by the same gene family and are biosynthesized on ribosomes [5]

  • Data filtering and assembly of transcriptomes Transcriptome sequencing of seven amanitin-producing mushrooms was performed on the BGISEQ-500 platform using the combinational probe-anchor synthesis sequencing method

Read more

Summary

Introduction

Amanitin-producing mushrooms, mainly distributed in the genera Amanita, Galerina and Lepiota, possess MSDIN gene family for the biosynthesis of many cyclopeptides catalysed by prolyl oligopeptidase (POP). Amatoxins, which are lethal substances found in mushrooms, have mainly been reported to be present in species from three distinct genera classified into three different families: Amanita (Amanitaceae), Galerina (Hymenogastraceae) and Lepiota (Agaricaceae) [1,2,3,4]. The precursor peptide genes of α-amanitin (α-AMA) and phallacidin (PHD) along with multiple related sequences encoding unknown cyclic peptides were first identified and predicted in Amanita bisporigera by genome shotgun sequencing, indicating that amatoxins and phallotoxins are encoded by the same gene family and are biosynthesized on ribosomes [5]. Precursor peptide sequence alignment of α-AMA sequences from Amanita, Galerina and Lepiota shows high divergence except in the toxin region

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call