Abstract

In forest ecosystems, fungal mats are functionally important in nutrient and water uptake in litter and wood decomposition processes, in carbon resource allocation, soil weathering and in cycling of soil resources. Fungal mats can occur abundantly in forests and are widely distributed globally. We sampled ponderosa pine/white fir and mountain hemlock/noble fir communities at Crater Lake National Park for mat-forming soil fungi. Fungus collections were identified by DNA sequencing. Thirty-eight mat-forming genotypes were identified; members of the five most common genera (Gautieria, Lepiota, Piloderma, Ramaria, and Rhizopogon) comprised 67% of all collections. The mycorrhizal genera Alpova and Lactarius are newly identified as ectomycorrhizal mat-forming taxa, as are the saprotrophic genera Flavoscypha, Gastropila, Lepiota and Xenasmatella. Twelve typical mat forms are illustrated, representing both ectomycorrhizal and saprotrophic fungi that were found. Abundance of fungal mats was correlated with higher soil carbon to nitrogen ratios, fine woody debris and needle litter mass in both forest ecotypes. Definitions of fungal mats are discussed, along with some of the challenges in defining what comprises a fungal “mat”.

Highlights

  • The importance of ectomycorrhizal (EcM) and saprotrophic fungi in forest ecosystems is well established [1,2]

  • Prior work by Aguilera et al [41] on fungal mats in Oregon had established the important effect of increasing soil C:N ratio by EcM mat fungi

  • At Crater Lake National Park, we identified 36 EcM, mat-forming genotypes and 21 saprotrophic, mat-forming genotypes

Read more

Summary

Introduction

The importance of ectomycorrhizal (EcM) and saprotrophic fungi in forest ecosystems is well established [1,2]. Mycorrhizal fungi and their tree hosts form symbiotic relationships that are critical to obtain the nutrients needed for growth, and the role of saprotrophic fungi in biomass decomposition and nutrient cycling is a vital ecosystem function [3,4]. The evolutionary development of arbuscular mycorrhizal fungi over the past 460 My [12] and EcM within the last 220 My to150 My [13] has probably changed belowground nutrient cycling rates, for soil C, N, and P and associated

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call