Abstract

Although asexual reproduction has been attributed to Leishmania species, genetic exchange has recently been demonstrated, which helped emerging of hybrid isolates. Situated on the crossroads between three continents, Leishmania hybrids may be present in Turkey. In Turkey, visceral leishmaniasis caused by Leishmania infantum is less common, while cutaneous leishmaniasis (CL) caused by Leishmania tropica and L.infantum could reach 2500 reported cases a year. Our aim was to investigate genetic variability of local Leishmania species and presence of hybrid Leishmania strains in Turkey. Twenty CL patients from Sanliurfa and Hatay, where only L.tropica and both L.tropica and L.infantum cause CL, respectively, were registered equally. All isolates were assessed with real-time polymerase chain reaction (Rt-PCR), isoenzyme analysis, gene sequencing, two-dimensional gel electrophoresis (2D-PAGE) and MALDI-TOF/TOFMS followed by in vivo analyses on mouse model. Identification of differentially expressed proteins was performed. These proteins were confirmed by sequence analysis. All isolates from Sanliurfa were found to be L.tropica which caused cutaneous infection in mice. However, one of 10 isolates from Hatay was found as Leishmania major which caused cutaneous infection. Five isolates were found as L.tropica with Rt-PCR and gene sequencing, one of which had one different protein from the reference L.tropica strain and caused cutaneous infection. Four of the five isolates had five different proteins compared to reference strain and caused both cutaneous and visceral infections. Remaining four isolates showed double melting curves in Rt-PCR, which were concordant with L.tropica and L.infantum. Their sequencing and isoenzyme analyses indicated them as L.infantum. They had six different proteins compared to reference L.infantum strain and caused cutaneous and visceral infections. It is concluded that the isolates with different proteins were hybrid Leishmania species. In the present study, outcomes of the proteomics, genomics, clinical manifestations and tissue tropism on animal models were evaluated together for the first time. In addition to L.tropica and L.infantum, L.major was identified as a causative agent for CL and hybrids of L.infantum/tropica were also shown to be present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.