Abstract

We address the puzzle of “unity in diversity” in human languages by advocating the (minimal) common denominator for the diverse expressions of transitivity across human languages, consistent with the view that early in language evolution there was a modest beginning for syntax and that this beginning provided the foundation for the further elaboration of syntactic complexity. This study reports the results of a functional MRI experiment investigating differential patterns of brain activation during processing of sentences with minimal versus fuller syntactic structures. These structural layers have been postulated to represent different stages in the evolution of syntax, potentially engaging different brain networks. We focused on the Serbian “middles,” analyzed as lacking the transitivity (vP) layer, contrasted with matched transitives, containing the transitivity layer. Our main hypothesis was that transitives will produce more activation in the syntactic (Broca's–Basal Ganglia) brain network, in comparison to more rudimentary middles. The participants (n = 14) were healthy adults (Mean age = 33.36; SD = 12.23), native speakers of Serbo-Croatian. The task consisted of reading a series of sentences (middles and transitives; n = 64) presented in blocks of 8, while being engaged in a detection of repetition task. We found that the processing of transitives, compared to middles, was associated with an increase in activation in the basal ganglia bilaterally. Although we did not find an effect in Broca's area, transitives, compared to middles, evoked greater activation in the precentral gyrus (BA 6), proposed to be part of the “Broca's complex.” Our results add to the previous findings that Broca's area is not the sole center for syntactic processing, but rather is part of a larger circuit that involves subcortical structures. We discuss our results in the context of the recent findings concerning the gene-brain-language pathway involving mutations in FOXP2 that likely contributed to the enhancement of the frontal-striatal brain network, facilitating human capacity for complex syntax.

Highlights

  • One of the most challenging puzzles about human languages is how to account for the immense diversity in their form and the equal ease with which all languages are learned by children, including those that are simultaneously acquiring two languages with very different grammatical properties (Aboh and Ansaldo, this volume)

  • Statistical tests were only conducted in predefined comparisons using t-test in bilateral basal ganglia, and bilateral Brodmann Area (BA) 44/45

  • We found support for our main hypothesis that processing of less hierarchical structures would be related to reduced activation in the brain networks associated with syntactic processing, namely in basal ganglia

Read more

Summary

Introduction

One of the most challenging puzzles about human languages is how to account for the immense diversity in their form and the equal ease with which all languages are learned by children, including those that are simultaneously acquiring two languages with very different grammatical properties (Aboh and Ansaldo, this volume). We report the results of an fMRI study investigating differential patterns of brain activation during processing of wellformed sentences with minimal versus fuller clause structural complexity. We look at this phenomenon from a language evolution perspective, conceptualizing sentences with different degrees of syntactic complexity as reflecting distinct stages in the evolution of language. Relying on accepted postulates of theoretical syntax, Progovac (2015a, 2016a) proposed a gradual emergence of syntactic layers in language evolution, starting from the minimally complex intransitive small clause, gradually adding others, to accommodate transitivity, and verb finiteness This precise reconstruction is achieved by peeling off the syntactic layers in (1), widely accepted (Adger, 2003; Carnie, 2013) to constitute the basic skeleton of the modern sentence:

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.