Abstract

We classified early afterdepolarizations (EADs) into subgroups according to the spatial features of the intracellular Ca2+ concentration ([Ca2+]i). Myocytes were enzymatically isolated from guinea pig ventricles. When fura-2 salt was applied through a whole cell patch pipette after the formation of a gigaohm seal, the membrane potential was measured using the current, clamp technique. When myocytes were loaded with fura-2 AM, the membrane potential was recorded with a conventional microelectrode technique. Spatio-temporal changes in fura-2 fluorescence and cell length were recorded simultaneously, using a digital TV system. EADs were induced after superfusion with potassium-free Tyrode solution. Irrespective of the fura-2 loading procedure, EADs could be classified into those with spatially synchronous fluorescence changes (n = 26 from eight hearts) and those with heterogeneous changes (n = 20 from three hearts). EADs with synchronous features took off from a higher membrane potential (> or = -34 mV) than EADs with heterogeneous features (< or = -57 mV). These results suggest that EADs have at least two constituents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.