Abstract
Sulfate-reducing bacteria (SRB) play a major role in the coupled biogeochemical cycling of sulfur and chalcophilic metal(loid)s. By implication, they can exert a strong influence on the speciation and mobility of multiple metal(loid) contaminants. In this study, we combined DsrAB gene sequencing and sulfur isotopic profiling to identify the phylogeny and distribution of SRB and to assess their metabolic activity in salt marsh sediments exposed to acid mine drainage (AMD) for over 100 years. Recovered dsrAB sequences from three sites sampled along an AMD flow path indicated the dominance of a single Desulfovibrio species. Other major sequence clades were related most closely to Desulfosarcina, Desulfococcus, Desulfobulbus, and Desulfosporosinus species. The presence of metal sulfides with low delta(34)S values relative to delta(34)S values of pore water sulfate showed that sediment SRB populations were actively reducing sulfate under ambient conditions (pH of approximately 2), although possibly within less acidic microenvironments. Interestingly, delta(34)S values for pore water sulfate were lower than those for sulfate delivered during tidal inundation of marsh sediments. 16S rRNA gene sequence data from sediments and sulfur isotope data confirmed that sulfur-oxidizing bacteria drove the reoxidation of biogenic sulfide coupled to oxygen or nitrate reduction over a timescale of hours. Collectively, these findings imply a highly dynamic microbially mediated cycling of sulfate and sulfide, and thus the speciation and mobility of chalcophilic contaminant metal(loid)s, in AMD-impacted marsh sediments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.