Abstract

Quinoa (Chenopodium quinoa) has grown since ancestral times in the Andean mountains and Altiplano, which are the center of origin of this pseudo-cereal. The interaction of Quinoa with native microorganisms may have contributed to the success of this plant in very adverse climatic and soil conditions. This study addressed the microbial diversity associated with Quinoa plants growing in traditional lands. We employed a cultivable-dependent approach to characterize the communities and identify bacterial strains with potential application in agriculture. We identified bacterial isolates belonging to phyla Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria. The genera Bacillus and Rhizobium/Agrobacterium were the predominant groups in the Quinoa bacterial communities, while various Trichoderma species were also found in the fungi group. The plant growth-promoting ability of selected bacterial strains was assessed by culturing them on media and the in planta test. We used different assays to test the capabilities of the isolates for nitrogen fixation, phosphorus solubilization, and production of the phytohormone indole-3-acetic acid. We inoculated Quinoa seeds with some Bacillus strains and then evaluated plant growth and grain production. Plants inoculated with bacterial strains usually show increased growth parameters and grain yield. Altogether, this work reveals that Quinoa harbors many diverse cultivable bacteria and fungi, which could be used as biological amendments to promote plant growth in a chemical-free way. Avoiding chemical fertilizers helps reduce environmental pollution and maintains the organic character of Quinoa production. International Quinoa markets highly appreciate the organic quality of Quinoa. Keywords. Plant growth-promoting bacteria, Microbial diversity, Rhizosphere bacteria, Andean Altiplano, Trichoderma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.