Abstract

Rate-intensity functions at characteristic frequency (CF) were recorded from single fibres in the auditory nerve of anaesthetised guinea pigs. Within the same animal, CF rate-intensity functions, although probably forming a continuum, could be conveniently divided into three groups; (1) Saturating; reach maximum discharge rate within 30 dB of threshold, (2) Sloping-saturation; initially rapid growth in discharge rate leading to a slower growth in discharge rate but not saturating and (3) Straight; approximately constant increase in firing rate per decibel increase in sound pressure up to the maximum sound pressures used. Thresholds for individual fibres were plotted relative to compound action potential thresholds at the appropriate frequency. Fibres with straight CF rate-intensity functions had the highest thresholds. Fibres of the saturating CF rate-intensity type had the lowest thresholds, and the sloping-saturation CF rate-intensity type had thresholds intermediate between saturating and straight. There was a close relationship between the type of CF rate-intensity function exhibited by a fibre and its spontaneous discharge rate. Fibres with saturating CF rate-intensity functions generally had high spontaneous discharge rates (greater than 18/s), whereas those with straight CF rate-intensity functions generally had low spontaneous discharge rates (less than 0.5/s). The majority of fibres with sloping-saturation CF rate-intensity functions had spontaneous rates between 0.5/s and 18/s. There was a negative correlation (r = −0.59) between the logarithm of the spontaneous discharge rate and relative threshold at CF with the lowest spontaneous rate fibres having the highest thresholds and vice-versa. This diversity of CF rate-intensity functions has functional implications for both frequency and intensity coding at high sound pressures in the mammalian auditory system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.