Abstract

The present study aimed to investigate the molecular diversity of arbuscular mycorrhizal fungi (AMF) in natural seleniferous soils and their role in protecting plants from Se toxicity. The genomic DNA extracted from maize roots grown in seleniferous and non-seleniferous regions was amplified using AMF-specific primers by nested PCR. The 1.5kb amplicon spanning pSSU-ITS-pLSU of 18S rRNA of AMF was deciphered using the Illumina Miseq Next Generation Sequencing (NGS) technique. A total of 17 AMF species from the seleniferous region and 18 AMF species from the non-seleniferous region were identified. The number of reads of Glomus irregularis, G. custos, and G. intraradices was higher in seleniferous soil than in non-seleniferous soil, indicating their tolerance to Se. A consortium of Se-tolerant AMF inoculum was prepared and inoculated to maize plants, grown in natural seleniferous soils. AMF-inoculated plants had healthy growth with higher root, shoot, and grain biomass than non-AMF-inoculated plants. AMF inoculation leads to higher Se accumulation in roots but lesser Se accumulation in shoots and seeds of inoculated maize plants as compared to control plants. Present study results suggest that AMF species from seleniferous soils have the potential to be used as biofertilizers to improve plant growth and tolerate Se toxicity in seleniferous soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call