Abstract

Enzymes which reduce 4-chloroacetoacetate ethyl ester (CAAE) to ( R)- or ( S)-4-chloro-3-hydroxybutanoate ethyl ester (CHBE) were investigated. Several microorganisms which can reduce CAAE with high yields were discovered. An NADPH-dependent aldehyde reductase, ARI, and an NADPH-dependent carbonyl reductase, S1, were isolated from Sporobolomyces salmonicolor and Candida magnoliae, respectively, and enzymatic synthesis of chiral CHBE was performed through the reduction of CAAE. When ARI-overproducing Escherichia coli transformant cells or C. magnoliae cells were incubated in an organic solvent-water diphasic system. CAAE was stoichiometrically converted to ( R)- or ( S)-CHBE (> 92% enantiomeric excess), respectively. Multiple CAAE-reducing enzymes were present in S. salmonicolor, C. magnoliae and bakers' yeast. Comparison of the primary structures of these CAAE-reducing enzymes with other protein sequences showed that CAAE-reducing enzymes are widely distributed in various protein families, and various physiological roles of these enzymes in the cell were speculated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call