Abstract

Tubulin, the target site of dinitroaniline herbicides, is encoded by small gene families in plants. To better characterize the mechanisms of target-site resistance to dinitroaniline herbicides in the globally important weedy species Lolium rigidum, attempts were made to amplify and sequence α-tubulin transcripts. Four α-tubulin isoforms (TUA1, TUA2, TUA3 and TUA4) were identified in L. rigidum. Variations in the number and sequence of transcripts encoding these α-tubulin proteins were found in individuals from the two L. rigidum populations examined. Within and among populations, differences in the 5'- and 3'-untranslated regions of cDNA in TUA3 and TUA4 were identified. Furthermore, a novel double mutation, Arg-390-Cys+Asp-442-Glu, in the TUA3 transcript was identified and has the potential to confer dinitroaniline resistance. This research reveals the complexity of the α-tubulin gene family in individuals/populations of the cross-pollinated weedy species L. rigidum, and highlights the need for better understanding of the molecular architecture of tubulin gene families for detecting resistance point mutations. Although TUA4 is a commonly expressed α-tubulin isoform containing most frequently reported resistance mutations, other mutant tubulin isoforms may also have a role in conferring dinitroaniline resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.