Abstract

Combinatorial chemistry methods can be used, in principle, for the synthesis of very large compound libraries. However, these very large libraries are so large that the enumeration of all individual members of a library may not be practicable. We discuss here how one may increase the chances of finding compounds with desired properties from very large libraries by using combinatorial optimisation methods. Neuronal networks, evolutionary programming and especially genetic algorithms are heuristic optimisation methods that can be used implicitly to discover the relation between the structure of molecules and their properties. Genetic algorithms are derived from principles that are used by nature to find optimal solutions. Genetic algorithms have now been adapted and applied with success to problems in combinatorial chemistry. The optimisation behaviour of genetic algorithms was investigated using a library of molecules with known biological activities. From these studies, one can derive methods to estimate the diversity and structure property relationships without the need to enumerate and calculate the properties of the whole search space of these very large libraries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.