Abstract

We analyzed 22 clinical isolates of Plasmodiumvivax from Thailand and 17 from Brazil to investigate the extent of sequence variation in the thrombospondin-related adhesive protein of Plasmodiumvivax (PvTRAP), a homologue of P.falciparum TRAP (PfTRAP) which has been considered to be a promising vaccine candidate. In total 54 haplotypes were identified from 73 distinct gene clones. Coexistence of different PvTRAP in circulation occurred in 10 and 13 isolates from Thailand and Brazil, respectively. Forty out of 48 substituted nucleotides are non-synonymous changes. Most of the substituted residues reside in the von Willebrand factor type A-domain (region II), a sulfated glycosaminoglycan-binding domain (region III) and a proline-rich region (region IV). All nucleotide substitutions are dimorphic. Two haplotypes from Thailand contain an inserted sequence encoding aspartic acid-serine-proline in the proline-rich region. Sequence analysis has revealed that nucleotide diversity in PvTRAP is low although Brazilian isolates display a higher degree of variation than those from Thailand. Phylogenetic construction using the neighbor joining method has shown that most of the Thai and the Brazilian isolates appear to be mainly clustered into distinct groups. Significantly greater than expected values of the mean number of non-synonymous (dn) than synonymous (ds) nucleotide substitutions per site were observed in regions II and III of PvTRAP. Analysis of the published PfTRAP sequences has shown a similar finding in regions II and IV suggesting that positive selection operates on the regions. Hence, different regions in PvTRAP and PfTRAP could be under different pressures in terms of immune selection, structural and/or functional constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call