Abstract

The rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system (RWCS) feeds more than 6 billion people in South Asia and across the world. In developing countries, almost 2 billion individuals are suffering from Zn and Fe micronutrient deficiency. This study aimed to adopt genetically enriched varieties of rice and wheat to manage the Zn and Fe deficiency with organic and inorganic fertilization in the food system. The experiment was designed for two years (2018–2019) under the split-plot design and was replicated three times. The results of the study indicate that the highest grain yield of wheat and rice was increased by 67.09 and 58.41 and 44.10 and 33.21% more NPKFeZn in the applied treatments compared to the control treatment during both years, respectively. The treatment carpet waste and Trichoderma viride was performed for higher yields (grain, straw, and biological) as compared to the rest of the treatment. In the main-plot, with application of NPKFeZn, higher Fe and Zn ranges of 54.27 and 52.91 and 35.71 and 34.29 parts per million (ppm), respectively, were recorded during both years. Similarly, the residual effects of NPKFeZn treatment in rice Fe and Zn concentration were recorded at 44.17 and 41.22 and 27.55 and 24.19 ppm during both years, respectively. It was found that there was 49.18 and 42.12 and 25.28 and 19.94% more Fe and Zn content, respectively, in grain as compared to the traditional varieties range of 33 and 14 ppm for Fe and Zn, respectively. Ina sub-plot, for the wheat in carpet waste and Trichoderma viride treatment, the Fe and Zn contents were recorded as 55.21 and 54.62 and 37.05 and 35.53 ppm for the two years, respectively. In the traditional varieties of wheat, the range of Fe and Zn contents was 30 and 32 ppm, respectively. In the sub-plot of succeeding rice in carpet waste and Trichoderma viride treatment contents of Fe and Zn of 43.27 and 40.43 and 26.67 and 23.37 ppm were recorded during both years, respectively. On the basis of the interaction effect, the maximum total Fe and Zn uptake by wheat of 0.84 and 0.50 kg ha−1, respectively, were recorded in the N3 × B1C3 treatments. Likewise, the maximum total Fe and Zn uptakes by rice of 0.62 and 0.39 kg ha−1, respectively, were recorded with the interaction effect of N3 × B1C3 treatments. The hypothesis of the experiment was to manage malnutrition in society by diversifying genetically modified rice–wheat varieties in the RWCS. This research might assist in increasing nutritional security.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call