Abstract
Zeolite-templated carbons (ZTCs) are a family of ordered microporous carbons with extralarge surface areas and micropore volumes, which are synthesized by carbon deposition within the confined spaces of zeolite micropores. There has been great controversy regarding the atomic structures of ZTCs, which encompass two extremes: (1) three-dimensionally connected curved open-blade-type carbon moieties and (2) ideal tubular structures (commonly referred to as "Schwarzites"). In this study, through a combination of experimental analyses and theoretical calculations, we demonstrate that the atomic structure of ZTCs is difficult to define as a single entity, and it widely varies depending on their synthesis conditions. Carbon deposition using a large organic precursor and low-temperature framework densification generates ZTCs predominantly composed of open-blade-type moieties, characterized by low surface curvature and abundant H-terminated edge sites. Meanwhile, synthesis using a small precursor with high-temperature densification produces ZTCs with an increased portion of closed-strut carbon moieties (or closed-fullerene-like nodes), exhibiting large surface curvature and diminished edge sites. The variations in the atomic structure of ZTCs result in significant differences in their macroscopic properties, such as N2/CO2 adsorption, oxidative stability, work function, and electrocatalytic properties, despite the presence of comparable pore structures. Therefore, ZTCs demonstrate the potential to synthesize ordered nanoporous carbons with tunable physicochemical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.