Abstract
Summary Transposable elements (TEs) are the main reason for the high plasticity of plant genomes, where they occur as communities of diverse evolutionary lineages. Because research has typically focused on single abundant families or summarized TEs at a coarse taxonomic level, our knowledge about how these lineages differ in their effects on genome evolution is still rudimentary.Here we investigate the community composition and dynamics of 32 long terminal repeat retrotransposon (LTR‐RT) families in the 272‐Mb genome of the Mediterranean grass Brachypodium distachyon. We find that much of the recent transpositional activity in the B. distachyon genome is due to centromeric Gypsy families and Copia elements belonging to the Angela lineage. With a half‐life as low as 66 kyr, the latter are the most dynamic part of the genome and an important source of within‐species polymorphisms. Second, GC‐rich Gypsy elements of the Retand lineage are the most abundant TEs in the genome. Their presence explains > 20% of the genome‐wide variation in GC content and is associated with higher methylation levels.Our study shows how individual TE lineages change the genetic and epigenetic constitution of the host beyond simple changes in genome size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.