Abstract
Face recognition (FR) technologies have enabled many life-enriching applications but have also opened doors for potential misuse. Governments, private companies, or even individuals can scrape the web, collect facial images, and build a face database to fuel the FR system to identify human faces without their consent. This paper introduces PMask to combat such a privacy threat against unauthorized FR. It provides a holistic approach to enable privacy-preserving sharing of facial images. PMask preprocesses the facial image and hides its unique facial signature through iterative optimization with dual goals: (i) minimizing the amount of noise to ensure high image quality and (ii) minimizing the perception loss between the privacy-protected face and the original face to ensure the face is recognizable to be the same person by humans. Extensive experiments are conducted on eight representative FR models to evaluate PMask against unauthorized FR. The results validate that PMask provides much stronger protection, introduces less perceptible changes to facial images, and runs faster than state-of-the-art methods to provide privacy protection with a better user experience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.