Abstract

BackgroundKernel hardness, which has great influence on the end-use properties of common wheat, is mainly controlled by Puroindoline genes, Pina and Pinb. Using EcoTILLING platform, we herein investigated the allelic variations of Pina and Pinb genes and their association with the Single Kernel Characterization System (SKCS) hardness index in a diverse panel of wheat germplasm.ResultsThe kernel hardness varied from 1.4 to 102.7, displaying a wide range of hardness index. In total, six Pina and nine Pinb alleles resulting in 15 genotypes were detected in 1787 accessions. The most common alleles are the wild type Pina-D1a (90.4%) and Pina-D1b (7.4%) for Pina, and Pinb-D1b (43.6%), Pinb-D1a (41.1%) and Pinb-D1p (12.8%) for Pinb. All the genotypes have hard type kernel hardness of SKCS index (>60.0), except the wild types of Pina and Pinb combination (Pina-D1a/Pinb-D1a). The most frequent genotypes in Chinese and foreign cultivars was Pina-D1a/Pinb-D1b (46.3 and 39.0%, respectively) and in Chinese landraces was Pina-D1a/Pinb-D1a (54.2%). The frequencies of hard type accessions are increasing from 35.5% in the region IV, to 40.6 and 61.4% in the regions III and II, and then to 77.0% in the region I, while those of soft type are accordingly decreasing along with the increase of latitude. Varieties released after 2000 in Beijing, Hebei, Shandong and Henan have higher average kernel hardness index than that released before 2000.ConclusionThe kernel hardness in a diverse panel of Chinese wheat germplasm revealed an increasing of kernel hardness generally along with the latitude across China. The wild type Pina-D1a and Pinb-D1a, and one Pinb mutant (Pinb-D1b) are the most common alleles of six Pina and nine Pinb alleles, and a new double null genotype (Pina-D1x/Pinb-D1ah) possessed relatively high SKCS hardness index. More hard type varieties were released in recent years with different prevalence of Pin-D1 combinations in different regions. This work would benefit the understanding of the selection and molecular processes of kernel hardness across China and different breeding stages, and provide useful information for the improvement of wheat quality in China.

Highlights

  • Kernel hardness, which has great influence on the end-use properties of common wheat, is mainly controlled by Puroindoline genes, Pina and Pinb

  • The absence or altered primary structure of one of Puroindoline a (PINA) and Puroindoline b (PINB) will result in a hard grain texture, and among commercial wheat cultivars the most prevalent hard genotypes are the absence of PINA or the altered primary structure of PINB with null alleles of Pina and PinaD1a/Pinb-D1b, respectively [11,12,13]

  • High phenotypic variation in kernel hardness To assess the kernel hardness in Chinese wheat germplasm, 1646 accessions were collected from nine wheat cultivation regions in China and grown in Beijing in 2009–2010 cropping season, along with 141 foreign accessions from USA, Australia, Europe and Japan (Table 1)

Read more

Summary

Introduction

Kernel hardness, which has great influence on the end-use properties of common wheat, is mainly controlled by Puroindoline genes, Pina and Pinb. Soft grain wheat varieties have wild type (WT) alleles of both Pina and Pinb genes and any mutation in WT alleles at one or both Pin genes gives rise to hard grain texture leading to changed food technological properties [7]. Most of the known hardness alleles confer large and somewhat similar changes in endosperm texture relative to soft wheat, the discovery of new alleles could broaden the genetic background for kernel hardness and provide industry with grains more suitable for a variety of end-uses. Different combinations of Pina and Pinb alleles in common wheat determine the grain textural classes with diverse end-use characteristics [24]. Knowledge on the Puroindoline allelic composition in a diverse panel of germplasm is prerequisite for the parental selection for developing varieties with desired kernel hardness

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.