Abstract
The gut microbiota has been shown to play diverse roles in human health and disease although the underlying mechanisms have not yet been fully elucidated. Large cohort studies can provide further understanding into inter-individual differences, with more precise characterization of the pathways by which the gut microbiota influences human physiology and disease processes. Here, we aimed to profile the stool microbiome of children and adults from two population-based cohort studies, comprising 2,111 children in the age-range of 9 to 12 years (the Generation R Study) and 1,427 adult individuals in the range of 46 to 88 years of age (the Rotterdam Study). For the two cohorts, 16S rRNA gene profile datasets derived from the Dutch population were generated. The comparison of the two cohorts showed that children had significantly lower gut microbiome diversity. Furthermore, we observed higher relative abundances of genus Bacteroides in children and higher relative abundances of genus Blautia in adults. Predicted functional metagenome analysis showed an overrepresentation of the glycan degradation pathways, riboflavin (vitamin B2), pyridoxine (vitamin B6) and folate (vitamin B9) biosynthesis pathways in children. In contrast, the gut microbiome of adults showed higher abundances of carbohydrate metabolism pathways, beta-lactam resistance, thiamine (vitamin B1) and pantothenic (vitamin B5) biosynthesis pathways. A predominance of catabolic pathways in children (valine, leucine and isoleucine degradation) as compared to biosynthetic pathways in adults (valine, leucine and isoleucine biosynthesis) suggests a functional microbiome switch to the latter in adult individuals. Overall, we identified compositional and functional differences in gut microbiome between children and adults in a population-based setting. These microbiome profiles can serve as reference for future studies on specific human disease susceptibility in childhood, adulthood and specific diseased populations.
Highlights
The human gut microbiome is dynamic, shaped by multiple factors and has been shown to play an important role in human health
In this publication we report on the 16S stool microbiota profiles of 3,538 subjects from two large, deeply phenotyped and well-characterized population-based cohorts: the Generation R (GenR) Study and the Rotterdam Study (RS)
Our Generation R Study (GenR) stool microbiota possessed similar profiles as those observed in the Copenhagen Prospective Study on Asthma in Childhood (COPSAC) cohort[39]
Summary
The human gut microbiome is dynamic, shaped by multiple factors and has been shown to play an important role in human health. Several studies have reported an association between alterations in the composition of the gut microbiome and various gastrointestinal (GI)[1,2,3,4,5,6,7,8,9] and non-GI10–15 disease conditions in both children and adults. Emerging data suggest that early alterations in the gut microbiome are associated with an increased risk of developing diseases later in childhood and adulthood e.g., asthma[21,22] and Crohn’s disease[23]. These studies were, limited by low sample sizes. We report our findings on the differences in gut microbiota between 2,111 children aged 9-12 years and 1,427 adults >40 years of age living in the same city with similar urban surroundings
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.