Abstract

Fungal bioremediation is a promising technique for the cleanup of sites contaminated with polycyclic aromatic hydrocarbons (PAHs). However, due to limited understanding of the composition and dynamics of the native PAH-degrading microorganisms in contaminated sites, its application has been difficult. In the present study, DNA stable-isotope probing was performed to identify indigenous phenanthrene (PHE)-degrading bacteria and determine their diversity during the fungal bioremediation process. The results showed a total of 14 operational taxonomic units (OTUs) enriched in the heavy DNA fractions, which were related to seven genera (Sphingomonas, Sphingobacterium, Acidovorax, Massilia, Flavobacterium, Cupriavidus, Aeromicrobium, and unclassified Chitinophagaceae). Along with enhanced efficiency of PHE removal, the number and diversity of indigenous PHE-degrading bacteria in soil bioaugmented with fungi were significantly increased. Furthermore, based on the results of linear model analysis, we found that PHE degraders affiliated with the genus Sphingomonas were significantly enriched during fungal bioremediation. Moreover, fungal bioaugmentation promoted indigenous functional Proteobacteria involved in PAH degradation through co-metabolism, suggesting that PAH biodegradation was attributable to cooperative metabolism by fungi and indigenous bacteria. Our findings provide new insights into the diversity of PHE-degrading communities and support a more comprehensive view of the fungal bioremediation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call