Abstract

Bacteriophages are highly specific predators that drive bacterial diversity through coevolution while striking tradeoffs among preserving host populations for long-term exploitation and increasing their virulence, structural stability, or host range. Escherichia coli and other coliform bacteria present in the microbiota of milk and during early ripening of raw milk cheeses have been linked to the production of gas, manifested by the appearance of eyes, and the development of off-flavors; thus, they might cause early blowing and cheese spoilage. Here, we report the characterization of coliphages isolated from manure from small ruminant farms and E. coli strains isolated from goat and sheep raw milk cheese. Additionally, the virulence and host range of locally isolated and laboratory collection phages were determined by comparing the susceptibility of E. coli strains from different sources. In agreement with the high genetic diversity found within the species E. coli, clustering analysis of whole-cell protein revealed a total of 13 distinct profiles but none of the raw milk cheese isolates showed inhibition of growth by reference or water-isolated coliphages. Conversely, 10 newly isolated phages had a broad host range (i.e., able to lyse ≥50% of bacterial hosts tested), thus exhibiting utility for biocontrol and only one cheese-isolated E. coli strain was resistant to all the phages. Whereas there was a high positive correlation between bacterial susceptibility range and lysis intensity, the phages virulence decreased as range increased until reaching a plateau. These results suggest local gene-for-gene coevolution between hosts and phages with selective tradeoffs for both resistance and competitive ability of the bacteria and host-range extension and virulence of the phage populations. Hence, different phage cocktail formulations might be required when devising long-term and short-term biocontrol strategies.

Highlights

  • The mysterious demise of Lord Carnarvon after entering Tutankhamen’s tomb, wrongly attributed to exposure to deadly mycotoxins (Cox, 2003), served to pose “the curse of the pharaoh theory,” which postulates that extreme structural stability should favor the evolution of high virulence in parasites (Gandon, 1998; Roche et al, 2011)

  • Successful phages must strike a balance between maximizing their virulence and preserving host populations for long-term exploitation, implying that evolving reduced virulence avoids eradicating the bacterial population or driving it toward total resistance

  • The level of T4 resistance in E. coli varies with the carbon source (Bohannan and Lenski, 1999) and temperature (Bohannan and Lenski, 2000)

Read more

Summary

INTRODUCTION

The mysterious demise of Lord Carnarvon after entering Tutankhamen’s tomb, wrongly attributed to exposure to deadly mycotoxins (Cox, 2003), served to pose “the curse of the pharaoh theory,” which postulates that extreme structural stability should favor the evolution of high virulence in parasites (Gandon, 1998; Roche et al, 2011). Phage extracellular existence produces a compromise among rapidly and successfully infecting hosts, withstanding environmental stressors (such as extreme pH and temperature) and spurious adsorption to inappropriate targets (Gallet et al, 2009; Keen, 2014) Like their predators, subtle tradeoffs between resistance and competitive ability determine the composition of bacterial populations when phages are present and hinder phage-resistant lineages from completely overcoming sensitive bacteria and eradicating predating phages (Bohannan and Lenski, 2000). Our results suggest local gene-for-gene coevolution between hosts and phages, with selective tradeoffs for both resistance and competitive ability of the bacteria and host-range extension and virulence of the coliphage populations

MATERIALS AND METHODS
RESULTS AND DISCUSSION
DATA AVAILABILITY STATEMENT
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call