Abstract

The vertical flow constructed wetlands (VFCW) for the treatment of domestic wastewater has become a conventional and cost effective treatment system with one of the major disadvantage of elevated nitrate concentrations. The present study makes an effort in providing a new design of anaerobic denitrification unit termed as anaerobic chamber (AC) whichwas introduced after two-stage VFCW to remove nitrates from the treated wastewater (WW). The AC provided all the essential conditions of effective denitrification such as anaerobic environment with enough carbon and nitrogen source. To understand the pollutant removal mechanism in AC, microbial diversity and functional annotation was studied by metagenomic analysis of sequences obtained from biofilm formed in AC. The efficiency of AC was measured with respect to physicochemical wastewater quality parameters. The removal efficiencies were 88, 65, 43 and 27% for total nitrogen, nitrate (NO3), ammoniacal-nitrogen (NH4) andortho-phosphate respectively. The microbial flora was much more diverse and unique pertaining to anaerobic microbes in AC compared to WW with total of 954 and 1191 genuses respectively with minimum abundance of 10 hits. The metagenomes exhibited 188% more Archaea in the AC than WW where Crenarchaeota, Euryarchaeota, Korarchaeota, Nanoarchaeota and Thaumarchaeota were major phyla with 60 genuses. The nitrogen metabolism was reported in terms of assimilatory nitrate reductase. As the class, Proteobacteria, Actinobacteria were prominent in WW, whereas Proteobacteria, Chloroflexi in AC were abundant. From functional annotation of sequences, the microbial flora in AC has the potential of removal of pollutants present in the form of carbon, nitrogen, and phosphorus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call