Abstract
'RNA editing' describes the programmed alteration of the nucleotide sequence of an RNA species, relative to the sequence of the encoding DNA. The phenomenon encompasses two generic patterns of nucleotide change, 'insertion/deletion' and 'substitution', defined on the basis of whether the sequence of the edited RNA is colinear with the DNA sequence that encodes it. RNA editing is mediated by a variety of pathways that are mechanistically and evolutionarily unrelated. Messenger, ribosomal, transfer and viral RNAs all undergo editing in different systems, but well-documented cases of this phenomenon have so far been described only in eukaryotes, and most often in mitochondria. Editing of mRNA changes the identity of encoded amino acids and may create translation initiation and termination codons. The existence of RNA editing violates one of the long-accepted tenets of genetic information flow, namely, that the amino acid sequence of a protein can be directly predicted from the corresponding gene sequence. Particular RNA editing systems display a narrow phylogenetic distribution, which argues that such systems are derived within specific eukaryotic lineages, rather than representing traits that ultimately trace to a common ancestor of eukaryotes, or even further back in evolution. The derived nature of RNA editing raises intriguing questions about how and why RNA editing systems arise, and how they become fixed as additional, essential steps in genetic information transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.