Abstract

Sessile species compete for space and accessible light, with directed interactions evident in one species overgrowing another and with multispecies systems characterized by nontransitive relationships. Such patterns are observed in coral reefs or lichens on rock surfaces. Open systems with episodic invasions of such species have been predicted to exhibit a stable high-diversity state when the interaction probability is below a certain critical threshold. Here, we explore this metastable high-diversity state and find that the diversity in the high-diversity state scales with the square root of the system area. When introducing two different environments, we predict a hugely increased diversity along mutual environment border. Further, the presence of spatially segregated environments is predicted to allow for increased robustness of the high-diversity state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call